Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
1.
Sci Rep ; 11(1): 17813, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34497285

RESUMEN

Trigeminal (TG), dorsal root (DRG), and nodose/jugular (NG/JG) ganglia each possess specialized and distinct functions. We used RNA sequencing of two-cycle sorted Pirt-positive neurons to identify genes exclusively expressing in L3-L5 DRG, T10-L1 DRG, NG/JG, and TG mouse ganglion neurons. Transcription factor Phox2b and Efcab6 are specifically expressed in NG/JG while Hoxa7 is exclusively present in both T10-L1 and L3-L5 DRG neurons. Cyp2f2, Krt18, and Ptgds, along with pituitary hormone prolactin (Prl), growth hormone (Gh), and proopiomelanocortin (Pomc) encoding genes are almost exclusively in TG neurons. Immunohistochemistry confirmed selective expression of these hormones in TG neurons and dural nerves; and showed GH expression in subsets of TRPV1+ and CGRP+ TG neurons. We next examined GH roles in hypersensitivity in the spinal versus trigeminal systems. Exogenous GH produced mechanical hypersensitivity when injected intrathecally, but not intraplantarly. GH-induced thermal hypersensitivity was not detected in the spinal system. GH dose-dependently generated orofacial and headache-like periorbital mechanical hypersensitivity after administration into masseter muscle and dura, respectively. Periorbital mechanical hypersensitivity was reversed by a GH receptor antagonist, pegvisomant. Overall, pituitary hormone genes are selective for TG versus other ganglia somatotypes; and GH has distinctive functional significance in the trigeminal versus spinal systems.


Asunto(s)
Hormona del Crecimiento/metabolismo , Dolor/metabolismo , Proopiomelanocortina/metabolismo , Prolactina/metabolismo , Células Receptoras Sensoriales/metabolismo , Ganglio del Trigémino/metabolismo , Animales , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ratones , Ratones Transgénicos , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ganglio del Trigémino/citología
2.
J Comp Neurol ; 529(1): 111-128, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32356570

RESUMEN

While autonomic ganglia have been extensively studied in rats instead of mice, there is renewed interest in the anatomy of the mouse autonomic nervous system. This study examined the prevalence and anatomical features of a cell bridge linking two autonomic ganglia of the neck, namely, the nodose ganglion (NG) and the superior cervical ganglion (SCG) in a cohort of C57BL/6J mice. We identified a cell bridge between the NG and the cranial pole of the SCG. This cell bridge was tubular shaped with an average length and width of 700 and 240 µm, respectively. The cell bridge was frequently unilateral and significantly more prevalent in the ganglionic masses from males (38%) than females (21%). On each of its extremities, it contained a mixed of vagal afferents and postganglionic sympathetic neurons. The two populations of neurons abruptly replaced each other in the middle of the cell bridge. We examined the mRNA expression for selected autonomic markers in samples of the NG with or without cell bridge. Our results indicated that the cell bridge was enriched in both markers of postganglionic sympathetic and vagal afferents neurons. Lastly, using FluoroGold microinjection into the NG, we found that the existence of a cell bridge may occasionally lead to the inadvertent contamination of the SCG. In summary, this study describes the anatomy of a cell bridge variant consisting of the fusion of the mouse NG and SCG. The practical implications of our observations are discussed with respect to studies of the mouse vagal afferents, an area of research of increasing popularity.


Asunto(s)
Ganglio Nudoso/anatomía & histología , Ganglio Cervical Superior/anatomía & histología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ganglio Nudoso/citología , Prevalencia , Ganglio Cervical Superior/citología
3.
Gastroenterology ; 160(3): 875-888.e11, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33121946

RESUMEN

BACKGROUND AND AIMS: Destroying visceral sensory nerves impacts pancreatic islet function, glucose metabolism, and diabetes onset, but how islet endocrine cells interact with sensory neurons has not been studied. METHODS: We characterized the anatomical pattern of pancreatic sensory innervation by combining viral tracing, immunohistochemistry, and reporter mouse models. To assess the functional interactions of ß-cells with vagal sensory neurons, we recorded Ca2+ responses in individual nodose neurons in vivo while selectively stimulating ß-cells with chemogenetic and pharmacologic approaches. RESULTS: We found that pancreatic islets are innervated by vagal sensory axons expressing Phox2b, substance P, calcitonin-gene related peptide, and the serotonin receptor 5-HT3R. Centrally, vagal neurons projecting to the pancreas terminate in the commissural nucleus of the solitary tract. Nodose neurons responded in vivo to chemogenetic stimulation of ß-cells and to pancreas infusion with serotonin, but were not sensitive to insulin. Responses to chemogenetic and pharmacologic stimulation of ß-cells were blocked by a 5-HT3R antagonist and were enhanced by increasing serotonin levels in ß-cells. We further confirmed directly in living pancreas slices that sensory terminals in the islet were sensitive to serotonin. CONCLUSIONS: Our study establishes that pancreatic ß-cells communicate with vagal sensory neurons, likely using serotonin signaling as a transduction mechanism. Serotonin is coreleased with insulin and may therefore convey information about the secretory state of ß-cells via vagal afferent nerves.


Asunto(s)
Vías Aferentes/fisiología , Comunicación Celular , Células Secretoras de Insulina/fisiología , Ganglio Nudoso/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Femenino , Insulina/metabolismo , Microscopía Intravital , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Modelos Animales , Ganglio Nudoso/citología , Serotonina/metabolismo , Transducción de Señal/fisiología
4.
Curr Biol ; 30(22): 4510-4518.e6, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32946754

RESUMEN

Vagal afferent neuron (VAN) signaling sends information from the gut to the brain and is fundamental in the control of feeding behavior and metabolism [1]. Recent findings reveal that VAN signaling also plays a critical role in cognitive processes, including affective motivational behaviors and hippocampus (HPC)-dependent memory [2-5]. VANs, located in nodose ganglia, express receptors for various gut-derived peptide signals; however, the function of these receptors with regard to feeding behavior, metabolism, and memory control is poorly understood. We hypothesized that VAN-mediated processes are influenced by ghrelin, a stomach-derived orexigenic hormone, via communication to its receptor (GHSR) expressed on gut-innervating VANs. To examine this hypothesis, rats received nodose ganglia injections of an adeno-associated virus (AAV) expressing short hairpin RNAs targeting GHSR (or a control AAV) for RNAi-mediated VAN-specific GHSR knockdown. Results reveal that VAN GHSR knockdown induced various feeding and metabolic disturbances, including increased meal frequency, impaired glucose tolerance, delayed gastric emptying, and increased body weight compared to controls. Additionally, VAN-specific GHSR knockdown impaired HPC-dependent contextual episodic memory and reduced HPC brain-derived neurotrophic factor expression, but did not affect anxiety-like behavior or general activity levels. A functional role for endogenous VAN GHSR signaling was further confirmed by results revealing that VAN signaling is required for the hyperphagic effects of ghrelin administered at dark onset, and that gut-restricted ghrelin-induced increases in VAN firing rate require intact VAN GHSR expression. Collective results reveal that VAN GHSR signaling is required for both normal feeding and metabolic function as well as HPC-dependent memory.


Asunto(s)
Ghrelina/metabolismo , Hipocampo/fisiología , Ganglio Nudoso/metabolismo , Receptores de Ghrelina/metabolismo , Vías Aferentes/fisiología , Animales , Peso Corporal/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Conducta Alimentaria/fisiología , Vaciamiento Gástrico/fisiología , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Hambre/fisiología , Masculino , Memoria Episódica , Ratones , Modelos Animales , Neuronas/metabolismo , Ganglio Nudoso/citología , Ganglio Nudoso/cirugía , Ratas , Ratas Transgénicas , Receptores de Ghrelina/genética , Vagotomía
5.
J Neurosci ; 40(38): 7216-7228, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817244

RESUMEN

Viscera receive innervation from sensory ganglia located adjacent to multiple levels of the brainstem and spinal cord. Here we examined whether molecular profiling could be used to identify functional clusters of colon afferents from thoracolumbar (TL), lumbosacral (LS), and nodose ganglia (NG) in male and female mice. Profiling of TL and LS bladder afferents was also performed. Visceral afferents were back-labeled using retrograde tracers injected into proximal and distal regions of colon or bladder, followed by single-cell qRT-PCR and analysis via an automated hierarchical clustering method. Genes were chosen for assay (32 for bladder; 48 for colon) based on their established role in stimulus detection, regulation of sensitivity/function, or neuroimmune interaction. A total of 132 colon afferents (from NG, TL, and LS ganglia) and 128 bladder afferents (from TL and LS ganglia) were analyzed. Retrograde labeling from the colon showed that NG and TL afferents innervate proximal and distal regions of the colon, whereas 98% of LS afferents only project to distal regions. There were clusters of colon and bladder afferents, defined by mRNA profiling, that localized to either TL or LS ganglia. Mixed TL/LS clustering also was found. In addition, transcriptionally, NG colon afferents were almost completely segregated from colon TL and LS neurons. Furthermore, colon and bladder afferents expressed genes at similar levels, although different gene combinations defined the clusters. These results indicate that genes implicated in both homeostatic regulation and conscious sensations are found at all anatomic levels, suggesting that afferents from different portions of the neuraxis have overlapping functions.SIGNIFICANCE STATEMENT Visceral organs are innervated by sensory neurons whose cell bodies are located in multiple ganglia associated with the brainstem and spinal cord. For the colon, this overlapping innervation is proposed to facilitate visceral sensation and homeostasis, where sensation and pain are mediated by spinal afferents and fear and anxiety (the affective aspects of visceral pain) are the domain of nodose afferents. The transcriptomic analysis performed here reveals that genes implicated in both homeostatic regulation and pain are found in afferents across all ganglia types, suggesting that conscious sensation and homeostatic regulation are the result of convergence, and not segregation, of sensory input.


Asunto(s)
Sistema Nervioso Autónomo/citología , Neuronas Aferentes/metabolismo , Transcriptoma , Animales , Sistema Nervioso Autónomo/metabolismo , Sistema Nervioso Autónomo/fisiología , Células Cultivadas , Colon/inervación , Femenino , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Conducción Nerviosa , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas Aferentes/citología , Neuronas Aferentes/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiología , RNA-Seq , Vejiga Urinaria/inervación , Vísceras/inervación
6.
Respir Physiol Neurobiol ; 278: 103446, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32360368

RESUMEN

Inflammation can increase the excitability of bronchopulmonary C-fibers leading to excessive sensations and reflexes (e.g. wheeze and cough). We have previously shown modulation of peripheral nerve terminal mitochondria by antimycin A causes hyperexcitability in TRPV1-expressing bronchopulmonary C-fibers through the activation of protein kinase C (PKC). Here, we have investigated the PKC isoform responsible for this signaling. We found PKCß1, PKCδ and PKCε were expressed by many vagal neurons, with PKCα and PKCß2 expressed by subsets of vagal neurons. In dissociated vagal neurons, antimycin A caused translocation of PKCα but not the other isoforms, and only in TRPV1-lineage neurons. In bronchopulmonary C-fiber recordings, antimycin A increased the number of action potentials evoked by α,ß-methylene ATP. Selective inhibition of PKCα, PKCß1 and PKCß2 with 50 nM bisindolylmaleimide I prevented the antimycin-induced bronchopulmonary C-fiber hyperexcitability, whereas selective inhibition of only PKCß1 and PKCß2 with 50 nM LY333531 had no effect. We therefore conclude that PKCα is required for antimycin-induced increases in bronchopulmonary C-fiber excitability.


Asunto(s)
Antimicina A/farmacología , Bronquios/inervación , Fibras Nerviosas Amielínicas/efectos de los fármacos , Neuronas/efectos de los fármacos , Ganglio Nudoso/efectos de los fármacos , Proteína Quinasa C-alfa/efectos de los fármacos , Nervio Vago , Animales , Pulmón/inervación , Ratones , Fibras Nerviosas Amielínicas/metabolismo , Neuronas/metabolismo , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Isoformas de Proteínas/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/efectos de los fármacos , Proteína Quinasa C/metabolismo , Proteína Quinasa C-alfa/metabolismo , Canales Catiónicos TRPV/metabolismo
7.
Am J Physiol Cell Physiol ; 318(4): C787-C796, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32073876

RESUMEN

Cholecystokinin (CCK) is a gut-derived peptide that potently promotes satiety and facilitates gastric function in part by activating G protein-coupled CCK1 receptors on primary vagal afferent neurons. CCK signaling is dynamic and rapidly desensitizes, due to decreases in either receptor function and the resulting signal cascade, ion channel effectors, or both. Here we report a decay-time analytical approach using fluorescent calcium imaging that relates peak and steady-state calcium responses in dissociated vagal afferent neurons, enabling discrimination between receptor and ion channel effector functions. We found desensitization of CCK-induced activation was predictable, consistent across cells, and strongly concentration dependent. The decay-time constant (tau) was inversely proportional to CCK concentration, apparently reflecting the extent of receptor activation. To test this possibility, we directly manipulated the ion channel effector(s) with either decreased bath calcium or the broad-spectrum pore blocker ruthenium red. Conductance inhibition diminished the magnitude of the CCK responses without altering decay kinetics, confirming changes in tau reflect changes in receptor function selectively. Next, we investigated the contributions of the PKC and PKA signaling cascades on the magnitude and decay-time constants of CCK calcium responses. While inhibition of either PKC or PKA increased CCK calcium response magnitude, only general PKC inhibition significantly decreased the decay-time constant. These findings suggest that PKC alters CCK receptor signaling dynamics, while PKA alters the ion channel effector of the CCK response. This analytical approach should prove useful in understanding receptor/effector changes underlying acute desensitization of G-protein coupled signaling and provide insight into CCK receptor dynamics.


Asunto(s)
Colecistoquinina/farmacología , Neuronas Aferentes/efectos de los fármacos , Ganglio Nudoso/efectos de los fármacos , Nervio Vago/efectos de los fármacos , Animales , Calcio/metabolismo , Neuronas/efectos de los fármacos , Neuronas Aferentes/citología , Neuronas Aferentes/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/fisiología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
8.
Cell Rep ; 27(8): 2508-2523.e4, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31116992

RESUMEN

Sensory functions of the vagus nerve are critical for conscious perceptions and for monitoring visceral functions in the cardio-pulmonary and gastrointestinal systems. Here, we present a comprehensive identification, classification, and validation of the neuron types in the neural crest (jugular) and placode (nodose) derived vagal ganglia by single-cell RNA sequencing (scRNA-seq) transcriptomic analysis. Our results reveal major differences between neurons derived from different embryonic origins. Jugular neurons exhibit fundamental similarities to the somatosensory spinal neurons, including major types, such as C-low threshold mechanoreceptors (C-LTMRs), A-LTMRs, Aδ-nociceptors, and cold-, and mechano-heat C-nociceptors. In contrast, the nodose ganglion contains 18 distinct types dedicated to surveying the physiological state of the internal body. Our results reveal a vast diversity of vagal neuron types, including many previously unanticipated types, as well as proposed types that are consistent with chemoreceptors, nutrient detectors, baroreceptors, and stretch and volume mechanoreceptors of the respiratory, gastrointestinal, and cardiovascular systems.


Asunto(s)
Ganglio Nudoso/metabolismo , Nervio Vago/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Ganglio Nudoso/citología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma , Nervio Vago/citología
9.
J Neurosci ; 39(30): 5842-5860, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31123102

RESUMEN

Neural circuit development involves the coordinated growth and guidance of axons. During this process, axons encounter many different cues, but how these cues are integrated and translated into growth is poorly understood. In this study, we report that receptor signaling does not follow a linear path but changes dependent on developmental stage and coreceptors involved. Using developing chicken embryos of both sexes, our data show that calcium-sensing receptor (CaSR), a G-protein-coupled receptor important for regulating calcium homeostasis, regulates neurite growth in two distinct ways. First, when signaling in isolation, CaSR promotes growth through the PI3-kinase-Akt pathway. At later developmental stages, CaSR enhances tropomyosin receptor kinase B (TrkB)/BDNF-mediated neurite growth. This enhancement is facilitated through a switch in the signaling cascade downstream of CaSR (i.e., from the PI3-kinase-Akt pathway to activation of GSK3α Tyr279). TrkB and CaSR colocalize within late endosomes, cotraffic and coactivate GSK3, which serves as a shared signaling node for both receptors. Our study provides evidence that two unrelated receptors can integrate their individual signaling cascades toward a nonadditive effect and thus control neurite growth during development.SIGNIFICANCE STATEMENT This work highlights the effect of receptor coactivation and signal integration in a developmental setting. During embryonic development, neurites grow toward their targets guided by cues in the extracellular environment. These cues are sensed by receptors at the surface that trigger intracellular signaling events modulating the cytoskeleton. Emerging evidence suggests that the effects of guidance cues are diversified, therefore expanding the number of responses. Here, we show that two unrelated receptors can change the downstream signaling cascade and regulate neuronal growth through a shared signaling node. In addition to unraveling a novel signaling pathway in neurite growth, this research stresses the importance of receptor coactivation and signal integration during development of the nervous system.


Asunto(s)
Axones/metabolismo , Glicoproteínas de Membrana/metabolismo , Ganglio Nudoso/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores Sensibles al Calcio/metabolismo , Transducción de Señal/fisiología , Animales , Aumento de la Célula , Células Cultivadas , Embrión de Pollo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ganglio Nudoso/citología
10.
Endocrinology ; 160(5): 1307-1322, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30907928

RESUMEN

Leptin has been proposed to modulate viscerosensory information directly at the level of vagal afferents. In support of this view, broad expression for the leptin receptor (Lepr) has previously been reported in vagal afferents. However, the exact identity and distribution of leptin-sensitive vagal afferents has not been elucidated. Using quantitative PCR, we found that the whole mouse nodose ganglion was predominantly enriched in the short form of Lepr, rather than its long form. Consistent with this observation, the acute administration of leptin did not stimulate JAK-STAT signaling in the nodose ganglion. Using chromogenic in situ hybridization in wild-type mice and several reporter mouse models, we demonstrated that Lepr mRNA was restricted to nonneuronal cells in the epineurium and parenchyma of the nodose ganglion and a subset of vagal afferents, which accounted for only 3% of all neuronal profiles. Double labeling studies further established that Lepr-expressing vagal afferents were Nav1.8-negative fibers that did not supply the peritoneal cavity. Finally, double chromogenic in situ hybridization revealed that many Lepr-expressing neurons coexpressed the angiotensin 1a receptor (At1ar), which is a gene expressed in baroreceptors. Taken together, our data challenge the commonly held view that Lepr is broadly expressed in vagal afferents. Instead, our data suggest that leptin may exert a previously unrecognized role, mainly via its short form, as a direct modulator of a very small group of At1ar-positive vagal fibers.


Asunto(s)
Expresión Génica/efectos de los fármacos , Leptina/farmacología , Neuronas/efectos de los fármacos , Ganglio Nudoso/efectos de los fármacos , Receptores de Leptina/genética , Animales , Células Cultivadas , Hibridación in Situ/métodos , Leptina/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.8/genética , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Neuronas/metabolismo , Neuronas Aferentes/metabolismo , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Receptores de Leptina/metabolismo , Nervio Vago/citología , Nervio Vago/metabolismo
11.
J Physiol ; 597(6): 1503-1515, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30605228

RESUMEN

KEY POINTS: Tenascin X (TNX) functions in the extracellular matrix of skin and joints where it maintains correct intercellular connections and tissue architecture TNX is associated exclusively with vagal-afferent endings and some myenteric neurones in mouse and human stomach, respectively. TNX-deficient mice have accelerated gastric emptying and hypersensitivity of gastric vagal mechanoreceptors that can be normalized by an inhibitor of vagal-afferent sensitivity. Cultured nodose ganglion neurones showed no changes in response to capsaicin, cholecystokinin and potassium chloride in TNX-deficient mice. TNX-deficient patients have upper gastric dysfunction consistent with those in a mouse model. Our translational studies suggest that abnormal gastric sensory function may explain the upper gut symptoms present in TNX deficient patients, thus making it important to study gastric physiology. TNX deficiency should be evaluated routinely in patients with connective tissue abnormalities, which will enable a better understanding of its role and allow targeted treatment. For example, inhibitors of vagal afferents-baclofen could be beneficial in patients. These hypotheses need confirmation via targeted clinical trials. ABSTRACT: Tenascin-X (TNX) is a glycoprotein that regulates tissue structure via anti-adhesive interactions with collagen in the extracellular matrix. TNX deficiency causes a phenotype similar to hypermobility Ehlers-Danlos syndrome involving joint hypermobility, skin hyperelasticity, pain and gastrointestinal dysfunction. Previously, we have shown that TNX is required for neural control of the bowel by a specific subtype of mainly cholinergic enteric neurones and regulates sprouting and sensitivity of nociceptive sensory endings in mouse colon. These findings correlate with symptoms shown by TNX-deficient patients and mice. We aimed to identify whether TNX is similarly present in neural structures found in mouse and human gastric tissue. We then determined whether TNX has a functional role, specifically in gastric motor and sensory function and nodose ganglia neurones. We report that TNX was present in calretinin-immunoreactive extrinsic nerve endings in mouse and human stomach. TNX deficient mice had accelerated gastric emptying and markedly increased vagal afferent responses to gastric distension that could be rescued with GABAB receptor agonist. There were no changes in nodose ganglia excitability in TNX deficient mice, suggesting that vagal afferent responses are probably the result of altered peripheral mechanosensitivity. In TNXB-deficient patients, significantly greater symptoms of reflux, indigestion and abdominal pain were reported. In the present study, we report the first role for TNX in gastric function. Further studies are required in TNX deficient patients to determine whether symptoms can be relieved using GABAB agonists.


Asunto(s)
Síndrome de Ehlers-Danlos/genética , Vaciamiento Gástrico , Estómago/fisiología , Tenascina/genética , Animales , Células Cultivadas , Síndrome de Ehlers-Danlos/fisiopatología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Neuronas Aferentes/metabolismo , Neuronas Aferentes/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiología , Estómago/fisiopatología , Tenascina/metabolismo , Nervio Vago/metabolismo , Nervio Vago/fisiología
12.
J Physiol ; 597(6): 1487-1502, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30565225

RESUMEN

KEY POINTS: Obesity is associated with disrupted satiety regulation. Mice with diet-induced obesity have reduced vagal afferent neuronal excitability and a decreased afferent response to satiety signals. A low grade inflammation occurs in obesity with increased expression of inducible nitric oxide synthase (iNOS). Inhibition of iNOS in diet-induced obese mice restored vagal afferent neuronal excitability, increased the afferent response to satiety mediators and distention of the gut, and reduced short-term energy intake. A prolonged inhibition of iNOS reduced energy intake and body weight gain during the first week, and reduced amounts of epididymal fat after 3 weeks. We identified a novel pathway underlying disrupted satiety regulation in obesity. Blocking of this pathway might be clinically useful for the management of obesity. ABSTRACT: Vagal afferents regulate feeding by transmitting satiety signals to the brain. Mice with diet-induced obesity have reduced vagal afferent sensitivity to satiety signals. We investigated whether inducible nitric oxide synthase (iNOS)-derived NO contributed to this reduction. C57BL/6J mice were fed a high- or low-fat diet for 6-8 weeks. Nodose ganglia and jejunum were analysed by immunoblotting for iNOS expression; NO production was measured using a fluorometric assay. Nodose neuron excitability and intestinal afferent sensitivity were evaluated by whole-cell patch clamp and in vitro afferent recording, respectively. Expression of iNOS and production of NO were increased in nodose ganglia and the small intestine in obese mice. Inhibition of iNOS in obese mice by pre-treatment with an iNOS inhibitor increased nodose neuron excitability via 2-pore-domain K+ channel leak currents, restored afferent sensitivity to satiety signals and reduced short-term energy intake. Obese mice given the iNOS inhibitor daily for 3 weeks had reduced energy intake and decreased body weight gain during the first week, compared to mice given saline, and lower amounts of epididymal fat at the end of 3 weeks. Inhibition of iNOS or blocking the action of iNOS-derived NO on vagal afferent pathways might comprise therapeutic strategies for hyperphagia and obesity.


Asunto(s)
Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo , Obesidad/metabolismo , Respuesta de Saciedad , Nervio Vago/fisiología , Potenciales de Acción , Animales , Yeyuno/inervación , Yeyuno/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Aferentes/metabolismo , Neuronas Aferentes/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiología , Obesidad/fisiopatología , Canales de Potasio/metabolismo , Transducción de Señal , Nervio Vago/metabolismo
13.
Physiol Rep ; 6(23): e13927, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30512249

RESUMEN

Previous work has shown that cannabinoids increase feeding, while cholecystokinin (CCK) has an anorexigenic effect on food intake. Receptors for these hormones are located on cell bodies of vagal afferent nerves in the nodose ganglia. An interaction between CCK and endocannabinoid receptors has been suggested. The purpose of these studies is to explore the effect of pretreatment with a cannabinoid agonist, CP 55,940, on nodose neuron activation by CCK. To determine the effect of CP 55,940 and CCK on neuron activation, rats were anesthetized and nodose ganglia were excised. The neurons were dissociated and placed in culture on coverslips. The cells were treated with media; CP 55,940; CCK; CP 55,940 followed by CCK; or AM 251, a CB1 receptor antagonist, and CP 55,940 followed by CCK. Immunohistochemistry was performed to stain the cells for cFos as a measure of cell activation. Neurons were identified using neurofilament immunoreactivity. The neurons on each slip were counted using fluorescence imaging, and the number of neurons that were cFos positive was counted in order to calculate the percentage of activated neurons per coverslip. Pretreatment with CP 55,940 decreased the percentage of neurons expressing cFos-immunoreactivity in response to CCK. This observation suggests that cannabinoids inhibit CCK activation of nodose ganglion neurons.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Colecistoquinina/farmacología , Ciclohexanoles/farmacología , Neuronas/efectos de los fármacos , Ganglio Nudoso/efectos de los fármacos , Animales , Células Cultivadas , Masculino , Neuronas/metabolismo , Ganglio Nudoso/citología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley
14.
PLoS One ; 13(6): e0199282, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29928032

RESUMEN

Two-pore domain potassium channels (K2P) constitute major candidates for the regulation of background potassium currents in mammalian cells. Channels of the TREK subfamily are also well positioned to play an important role in sensory transduction due to their sensitivity to a large number of physiological and physical stimuli (pH, mechanical, temperature). Following our previous report describing the molecular expression of different K2P channels in the vagal sensory system, here we confirm that TREK channels are functionally expressed in neurons from the mouse nodose ganglion (mNG). Neurons were subdivided into three groups (A, Ah and C) based on their response to tetrodotoxin and capsaicin. Application of the TREK subfamily activator riluzole to isolated mNG neurons evoked a concentration-dependent outward current in the majority of cells from all the three subtypes studied. Riluzole increased membrane conductance and hyperpolarized the membrane potential by approximately 10 mV when applied to resting neurons. The resting potential was similar in all three groups, but C cells were clearly less excitable and showed smaller hyperpolarization-activated currents at -100 mV and smaller sustained currents at -30 mV. Our results indicate that the TREK subfamily of K2P channels might play an important role in the maintenance of the resting membrane potential in sensory neurons of the autonomic nervous system, suggesting its participation in the modulation of vagal reflexes.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Neuronas/metabolismo , Ganglio Nudoso/citología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Riluzol/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Capsaicina/farmacología , Células Cultivadas , Humanos , Ratones , Neuronas/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Tetrodotoxina/toxicidad
15.
J Nutr Biochem ; 57: 130-135, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29702431

RESUMEN

Fermentable carbohydrates including dietary fibers and resistant starch produce short-chain fatty acids (SCFAs), including acetate, propionate and butyrate, through microbial fermentation in the intestine of rodents and humans. Consumption of fermentable carbohydrate and SCFAs suppress food intake, an effect involving the brain. However, their signaling pathway to the brain remains unclear. Vagal afferents serve to link intestinal information to the brain. In the present study, we explored possible role of vagal afferents in the anorexigenic effect of SCFAs. Intraperitoneal (ip) injection of three SCFA molecules (6 mmol/kg) suppressed food intake in fasted mice with the rank order of butyrate > propionate > acetate. The suppressions of feeding by butyrate, propionate and acetate were attenuated by vagotomy of hepatic branch and blunted by systemic treatment with capsaicin that denervates capsaicin-sensitive sensory nerves including vagal afferents. Ip injection of butyrate induced significant phosphorylation of extracellular-signal-regulated kinase 1/2, cellular activation markers, in nodose ganglia and their projection site, medial nucleus tractus solitaries. Moreover, butyrate directly interacted with single neurons isolated from nodose ganglia and induced intracellular Ca2+ signaling. The present results identify the vagal afferent as the novel pathway through which exogenous SCFAs execute the remote control of feeding behavior and possibly other brain functions. Vagal afferents might participate in suppression of feeding by intestine-born SCFAs.


Asunto(s)
Depresores del Apetito/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ácidos Grasos Volátiles/farmacología , Neuronas Aferentes/efectos de los fármacos , Animales , Depresores del Apetito/administración & dosificación , Calcio/metabolismo , Capsaicina/farmacología , Relación Dosis-Respuesta a Droga , Ácidos Grasos Volátiles/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Neuronas Aferentes/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/efectos de los fármacos , Fosforilación/efectos de los fármacos , Vagotomía/métodos , Nervio Vago/citología , Nervio Vago/fisiología
16.
Respir Physiol Neurobiol ; 249: 35-46, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29306061

RESUMEN

The structure of primary afferent nerve terminals profoundly influences their function. While the complex vagal airway nerve terminals (stretch receptors, cough receptors and neuroepithelial bodies) were thoroughly characterized, much less is known about the structure of airway nerves that do not form distinct complex terminals (often termed free nerve fibers). We selectively induced expression of GFP in vagal afferent nerves in the mouse by transfection with AAV-GFP virus vector and visualized nerve terminals in the trachea by whole organ confocal imaging. Based on structural characteristics we identified four types of vagal afferent nerve fiber terminals in the trachea. Importantly, we found that distinct compartments of tracheal tissue are innervated by distinct nerve fiber terminal types in a non-overlapping manner. Thus, separate terminal types innervate tracheal epithelium vs. anterolateral tracheal wall containing cartilaginous rings and ligaments vs. dorsal wall containing smooth muscle. Our results will aid the study of structure-function relationships in vagal airway afferent nerves and regulation of respiratory reflexes.


Asunto(s)
Neuronas Aferentes/fisiología , Tráquea/citología , Nervio Vago/fisiología , Animales , Epitelio , Vectores Genéticos/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ganglio Nudoso/citología , Transfección
17.
J Comp Neurol ; 526(3): 550-566, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29124772

RESUMEN

Nerve endings with immunoreactivity for the P2X3 purinoreceptor (P2X3) in the rat tracheal mucosa were examined by immunohistochemistry of whole-mount preparations with confocal scanning laser microscopy. P2X3 immunoreactivity was observed in ramified endings distributed in the whole length of the trachea. The myelinated parent axons of P2X3-immunoreactive nerve endings ramified into several branches that extended two-dimensionally in every direction at the interface between the epithelial layer and lamina propria. The axonal branches of P2X3-immunoreactive endings branched off many twigs located just beneath the epithelium, and continued to intraepithelial axon terminals. The axon terminals of P2X3-immunoreactive endings were beaded, rounded, or club-like in shape and terminated between tracheal epithelial cells. Flat axon terminals sometimes partly ensheathed neuroendocrine cells with immunoreactivity for SNAP25 or CGRP. Some axons and axon terminals with P2X3 immunoreactivity were immunoreactive for P2X2, while some terminals were immunoreactive for vGLUT2. Furthermore, a retrograde tracing method using fast blue (FB) revealed that 88.4% of FB-labeled cells with P2X3 immunoreactivity originated from the nodose ganglion. In conclusion, P2X3-immunoreactive nerve endings in the rat tracheal mucosa have unique morphological characteristics, and these endings may be rapidly adapting receptors and/or irritant receptors that are activated by mucosal irritant stimuli.


Asunto(s)
Membrana Mucosa/citología , Terminaciones Nerviosas/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Células Receptoras Sensoriales/citología , Tráquea/citología , Amidinas/metabolismo , Animales , Calcitonina/metabolismo , Células Epiteliales/citología , Masculino , Microscopía Confocal , Proteína Básica de Mielina/metabolismo , Ganglio Nudoso/citología , Ratas , Ratas Wistar , Proteína 25 Asociada a Sinaptosomas/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
18.
PLoS One ; 12(10): e0185985, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28982197

RESUMEN

Capsaicin-sensitive sensory C-fibers derived from vagal ganglia innervate the visceral organs, and respond to inflammatory mediators and noxious stimuli. These neurons play an important role in maintenance of visceral homeostasis, and contribute to the symptoms of visceral inflammatory diseases. Vagal sensory neurons are located in two ganglia, the jugular ganglia (derived from the neural crest), and the nodose ganglia (from the epibranchial placodes). The functional difference, especially in response to immune mediators, between jugular and nodose neurons is not fully understood. In this study, we microscopically isolated murine nodose and jugular capsaicin-sensitive / Trpv1-expressing C-fiber neurons and performed transcriptome profiling using ultra-low input RNA sequencing. RNAseq detected genes with significantly differential expression in jugular and nodose neurons, which were mostly involved in neural functions. Transcriptional regulators, including Cited1, Hoxb5 and Prdm12 showed distinct expression patterns in the two C-fiber neuronal populations. Common and specific expression of immune receptor proteins was characterized in each neuronal type. The expression of immune receptors that have received little or no attention from vagal sensory biologists is highlighted including receptors for certain chemokines (CXCLs), interleukins (IL-4) and interferons (IFNα, IFNγ). Stimulation of immune receptors with their cognate ligands led to activation of the C-fibers in isolated functional assays.


Asunto(s)
Capsaicina/farmacología , Mediadores de Inflamación/metabolismo , Neuronas/metabolismo , Ganglio Nudoso/metabolismo , Receptores de Superficie Celular/metabolismo , Análisis de Secuencia de ARN/métodos , Canales Catiónicos TRPV/metabolismo , Nervio Vago/metabolismo , Animales , Calcio/metabolismo , Ratones , Neuronas/efectos de los fármacos , Ganglio Nudoso/citología , Nervio Vago/citología
19.
J Pharmacol Exp Ther ; 362(3): 368-377, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28620120

RESUMEN

The nonselective cation channel transient receptor potential ankryn subtype family 1 (TRPA1) is expressed in neurons of dorsal root ganglia and trigeminal ganglia and also in vagal afferent neurons that innervate the lungs and gastrointestinal tract. Many TRPA1 agonists are reactive electrophilic compounds that form covalent adducts with TRPA1. Allyl isothiocyanate (AITC), the common agonist used to identify TRPA1, contains an electrophilic group that covalently binds with cysteine residues of TRPA1 and confers a structural change on the channel. There is scientific motivation to identify additional compounds that can activate TRPA1 with different mechanisms of channel gating. We provide evidence that ethyl vanillin (EVA) is a TRPA1 agonist. Using fluorescent calcium imaging and whole-cell patch-clamp electrophysiology on dissociated rat vagal afferent neurons and TRPA1-transfected COS-7 cells, we discovered that EVA activates cells also activated by AITC. Both agonists display similar current profiles and conductances. Pretreatment with A967079, a selective TRPA1 antagonist, blocks the EVA response as well as the AITC response. Furthermore, EVA does not activate vagal afferent neurons from TRPA1 knockout mice, showing selectivity for TRPA1 in this tissue. Interestingly, EVA appears to be pharmacologically different from AITC as a TRPA1 agonist. When AITC is applied before EVA, the EVA response is occluded. However, they both require intracellular oxidation to activate TRPA1. These findings suggest that EVA activates TRPA1 but via a distinct mechanism that may provide greater ease for study in native systems compared with AITC and may shed light on differential modes of TRPA1 gating by ligand types.


Asunto(s)
Benzaldehídos/farmacología , Canales Catiónicos TRPC/agonistas , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Isotiocianatos/farmacología , Masculino , Ratones , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Ganglio Nudoso/citología , Ganglio Nudoso/efectos de los fármacos , Oximas/farmacología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/genética
20.
J Neurosci Methods ; 289: 93-98, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28602889

RESUMEN

BACKGROUND: The anatomy and physiology of the pig nervous system is more similar to humans compared to traditional rodent models. This makes the pig an attractive model to answer questions relating to human health and disease. Yet the technical and molecular tools available to pig researchers are limited compared to rodent researchers. NEW METHOD: We developed simple and rapid methods to isolate the trigeminal, nodose (distal vagal), and dorsal root ganglia from neonatal pigs. We selected these ganglia due to their broad applicability to basic science researchers and clinicians. RESULTS: Use of these methods resulted in reproducible isolation of all three types of ganglia as validated by histological examination. COMPARISON WITH EXISTING METHOD(S): There are currently no methods that describe a step-by-step protocol to isolate these porcine ganglia. CONCLUSIONS: In conclusion, these methods for ganglia collection will facilitate and accelerate future neuroscience investigations in pig models of human disease.


Asunto(s)
Disección/métodos , Ganglios Espinales , Ganglio Nudoso , Porcinos , Ganglio del Trigémino , Animales , Animales Recién Nacidos , Femenino , Ganglios Espinales/citología , Ganglios Espinales/cirugía , Técnicas Histológicas , Masculino , Ganglio Nudoso/citología , Ganglio Nudoso/cirugía , Porcinos/anatomía & histología , Ganglio del Trigémino/citología , Ganglio del Trigémino/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...